Colorful butterflies increase their odds of survival by sharing traits

May 16, 2012

May 16, 2012

Press Release

Findings also reveal enhanced smell, taste genes

Irvine, Calif., May 16, 2012 —Bright black-and-red butterflies that flit across the sunlit edges of Amazonian rain forests are natural hedonists, and it does them good, according to genetic data published today in the journal Nature.

An international consortium of researchers at UC Irvine and elsewhere discovered that different species of the Heliconius butterfly are crossbreeding to more quickly acquire superior wing colors. They also have a surprisingly large number of genes devoted to smell and taste.

The use of color to attract mates and fend off predators is widespread in daytime-loving butterflies, while night-flying moths are famous for having large antennae to sniff out potential mates’ pheromones. Thus, researchers predicted that because they’re such visual creatures, the butterflies would not be able to smell or taste very well.

“Instead, we learned that they have a rich repertoire of genes for olfaction [smell] and chemosensation [in this case taste],” said UCI biologist and article co-author Adriana Briscoe.

Delicate antennae contain smell receptors, she explained, and the butterflies’ tiny feet hold taste buds.

Briscoe said additional findings by the consortium could help scientists better understand trait sharing in other species, such as Homo sapiens and Neanderthals.

As part of the international effort, researchers first sequenced the genome of the Postman butterfly (Heliconius melpomene), a well-known species whose caterpillars feast on passion fruit vines in the Peruvian Amazon. They then examined the genetic makeup of two closely related species – Heliconius timareta and Heliconius elevatus – all of which sport similar color patterns on their wings to ward off predators.

The genetic sharing among species, scientists believe, is the result of hybridization. Considered extremely rare, hybridization occurs when members of different species interbreed in the wild. Though often seen as an evolutionary dead end, hybrids are able to interbreed with other species, in the process introducing new genes that can help populations adapt to new or changing environments.

“What we show is that one butterfly species can gain its protective color pattern genes ready-made from a different species by interbreeding with it – a much faster process than having to evolve one’s color patterns from scratch,” said co-author Kanchon Dasmahapatra, a postdoctoral researcher at University College London.

The paper was produced by researchers in the U.S., Central America, South America and Great Britain – dubbed the Heliconius Genome Consortium – who took on the task of sequencing the butterfly’s genome, consisting of about 295 million DNA base pairs.

More than 80 scientists from nine labs around the world helped fund the effort, eliminating the need for major grant support. Briscoe’s portion was funded by the National Science Foundation.

Besides Briscoe, UCI co-authors were James Lewis, Arnaud Martin, Furong Yuan and Robert Reed, whose lab produced the online database server and genome browser.

Other participating institutions were the University of Cambridge; the Smithsonian Tropical Research Institute, in Panama; Harvard University; the University of Exeter; Paris’ Museum National d’Histoire Naturelle; Boston University; The University of Edinburgh; and Baylor College of Medicine.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

If you’d like to learn more about how you can support the faculty and research at the Biological Sciences School, please contact Andrew DiNuzzo at 949.824.2734 or adinuzzo@uci.edu.